
uIP - A Free Small TCP/IP Stack

Adam Dunkels

adam@dunkels.com

January 15, 2002

Abstract

This document describes the uIP TCP/IP stack. The uIP TCP/IP
stack is an extremely small implementation of the TCP/IP protocol suite
intended for embedded systems running low-end 8 or 16-bit microcon-
trollers. The code size and RAM requirements of uIP is an order of
magnitude smaller than other generic TCP/IP stacks today.

The uIP stack uses an event based programming model to reduce code
size and RAM usage. The callback based interface between the TCP/IP
stack and the application program is described in this document. The
interface between the lower layers of the system and uIP are also covered.
Details about the actual protocol implementations are given. Finally,
numerous examples of uIP appilication programs are included.

The uIP code and new versions of this document can be downloaded
from the uIP homepage at http://dunkels.com/adam/uip/.

This document describes uIP version 0.6.

1 Introduction

In recent years, the interest of connecting even small devices to an existing
IP network such as the global Internet has increased. In order to be able to
communicate over the Internet, an implementation of the TCP/IP protocol
stack is needed. uIP is an implementation of the most important parts of the
TCP/IP protocol suite. The goal of the uIP implementation is to keep both the
code size and the memory usage to a minimum. uIP is an order of magnitude
smaller than any existing generic TCP/IP stack today. uIP is written in the C
programming language and is free to distribute and use for both non-commercial
and commercial use.
In other TCP/IP stack, memory is often used to buffer data while waiting

for an acknowledment signal that the data has successfully been delivered. In
case a data packet is lost, the data and has to be retransmitted. Typically, the
data is buffered in RAM, even though the application may be able to quickly
regenerate the data if a retransmission is needed. For instance, an HTTP server
serving mostly static or semi-static pages from ROM does not need to buffer the
static content in a RAM buffer. Instead, the HTTP server can easily reproduce
the data from ROM if a packet is lost. The data is simply read back from its
original location. uIP takes advantage of this by allowing the application to
take part in doing retransmissions.

1

This document is structured as follows. Section 2 describes how to use uIP,
both from the system’s and the application’s standpoints. Details about the
protocol implementations are discussed in Section 3. Section 4 covers how uIP
is configured, and Section 5 describes the architecture specific portions of uIP.
Finally, Section 6 provides a few examples of application programs for uIP.

2 Interfacing uIP

uIP can be seen as a code library that provides certain functions to the sys-
tem. Figure 1 shows the relations between uIP, the underlying system and the
application program. uIP provides three functions to the underlying system,
uip init(), uip input(), and uip periodic(). The application must provide
a callback function to uIP. The callback function is called when network or
timer events occur. uIP provides the application with a number of functions for
interacting with the stack.
Note that most of the functions provided by uIP is implemented as C macros

for speed, code size efficiency, and stack usage reasons.

uip_input()

Application

uIP

Network
device
driver

Periodic
timer

uip_periodic()

UIP_APPCALL()

System

Figure 1: uIP seen as a library.

2.1 The uIP/application interface

The BSD socket interface used in most operating systems is not suitable for
small systems since it forces a thread based programming model on the applica-
tion programmer. A multithreaded environment is significantly more expensive
to run not only because of the increased code complexity involved in thread
management, but also because of the extra memory needed for keeping per-
thread state. The execution time overhead in task switching also contributes to
this. Small systems may not have enough resources to implement such a mul-
tithreaded environment, and therefore an application interface which requires
this would not be suitable for uIP.
Instead, uIP uses an event based programming model where the application

is implemented as a C function that is called by uIP in response to certain
events. uIP calls the application when data is received, when data has been
successfully delivered to the other end of the connection, when a new connection
has been set up, or when data has to be retransmitted. The application is also

2

periodically polled for new data. The application program provides only one
callback function; it is up to the application to deal with mapping different
network services to different ports and connections.
uIP is different from other TCP/IP stacks in that it requires help from

the application when doing retransmissions. Other TCP/IP stacks buffer the
transmitted data in memory until the data is known to be successfully delivered
to the remote end of the connection. If the data needs to be retransmitted,
the stack takes care of the retransmission without notifying the application.
With this approach, the data has to be buffered in memory while waiting for
an acknowledgment even if the application might be able to quickly regenerate
the data if a retransmission has to be made. In order to reduce memory usage,
uIP utilizes the fact that the application may be able to regenerate sent data
and lets the application take part in retransmissions.

2.1.1 uIP/application events

The application must be implemented as a C function, UIP APPCALL(), that
uIP calls whenever an event occurs. Table 1 lists the possible events and for
each events show the corresponding test function. The test functions are used
to distinguish between different events. The functions are implemented as C
macros that will evaluate to either zero or non-zero. Note that certain events
can happen in conjunction with each other (i.e., new data can arrive at the same
time as data is acknowledged).

Table 1: uIP application events and the corresponding test functions.
A packet has arrived that acknowledges previ-
ously sent data.

uip acked()

A packet has arrived with new data for the
application.

uip newdata()

A remote host has connected to a listening
port.

uip connected()

A connection has been successfully set up to
a remote host.

uip connected()

The retransmission timer expires. uip rexmit()

The periodic polling timer expires. uip poll()

The remote host has closed the connection. uip closed()

The connection has been aborted by the re-
mote host.

uip aborted()

The connection has been aborted due to too
many retransmissions.

uip timedout()

When the application is called, uIP sets the global variable uip conn to point
to the uip conn structure (Figure 5) for the current connection. This can be
used to distinguish between different services. A typical use would be to inspect
the uip conn->lport (the local TCP port number) to decide which service the
connection should provide. For instance, an application might decide to act as
an HTTP server if the value of uip conn->lport is equal to 80 and act as a
TELNET server if the value is 23.

3

2.1.2 Receiving data

If the uIP test function uip newdata() evaluates to 1, the remote host of the
connection has sent new data. The uip appdata pointer point to the actual
data. The size of the data is obtained through the uIP function uip datalen().
Since the data is not buffered, the application must act immediately upon it.

2.1.3 Sending data

The application sends data by using the uIP function uip send(). The uip send()

function takes two arguments; a pointer to the data to be sent and the length
of the data. If the application needs RAM space for producing the actual data
that should be sent, the packet buffer (pointed to by the uip appdata pointer)
can be used for this purpose.
The application can send only one chunk of data at a time on a connection.

It is therefore not possible to call uip send() more than once per application
invocation; only the data from the last call will be sent. Note that since the
uip send() call will change certain global variables, it should not be called until
just before the application function returns.

2.1.4 Retransmitting data

If data has been lost in the network, the application will have to resend the
data. uIP keeps track of if the data has been received or not, and will inform
the application when the data is perceived to be lost. If the test function
uip rexmit() is true, the application should retransmit the last data it sent.
Retransmission is done in the same way as ordinary transmissions, i.e., with
uip send().

2.1.5 Closing connections

The application closes the current connection by calling the uip close(). This
will cause the connection to be cleanly closed. In order to indicate a fatal error,
the application might want to abort the connection and does so by calling the
uip abort() function.
If the connection has been closed by the remote end, the test function

uip closed() is true. The application may then do any necessary cleanups.

2.1.6 Reporting errors

There are two fatal errors that can happen to a connection, either that the
connection was aborted by the remote host, or that the connection retransmit-
ted the last data too many times and has been aborted. uIP reports this by
calling the application function. The application uses the two test functions
uip aborted() and uip timedout() to test for those error conditions.

2.1.7 Polling

When a connection is idle, uIP polls the application every time the periodic
timer fires. The application uses the test function uip poll() to check if it is
being polled by uIP.

4

2.1.8 Listening ports

uIP maintains a list of listening TCP ports. A new port is opened for listening
with the uip listen() function. When a connection request arrives on a listen-
ing port, uIP creates a new connection and calls the application function. The
test function uip connected() is true if the application was invoked because a
new connection was created.

2.1.9 Opening connections

As of version 0.6 of uIP, new connections can be opened from within uIP by
using the function uip connect(). This function opens a new connection to a
specified IP address and port and returns a pointer to the uip conn structure for
the new connection. If there are no free connection slots, the function returns
NULL. For convenience, the function uip ipaddr() may be used to pack an IP
address into the two element 16-bit array used by uIP to represent IP addresses.
Two examples of usage are shown in Figures 2 and 3. The first example

shows how to open a connection to TCP port 8080 of the remote end of the
current connection. If there are not enough TCP connection slots to allow a
new connection to be opened, the uip connect() function returns NULL and
the current connection is aborted by uip abort(). The second example shows
how to open a new connection to a specific IP address. No error checks are
made in this example.

void connect_example1_app(void) {

if(uip_connect(uip_conn->ripaddr, 8080) == NULL) {

uip_abort();

}

}

Figure 2: Opening a new connection to port 8080 at the remote end of the
current connection.

void connect_example2(void) {

u16_t ipaddr[2];

uip_ipaddr(ipaddr, 192,168,0,1);

uip_connect(ipaddr, 8080);

}

Figure 3: Opening a connection to port 8080 at host 192.168.0.1.

2.1.10 Flow control

uIP provides access to the TCP flow control through the functions uip stop()

and uip restart(). Consider an application that downloads data from a server
onto a slow device such as a disk drive. If the job queue for the disk drive is full,

5

the application is not prepared to accept any more data from the server until
the queue has been drained. The function uip stop() can be used to assert the
flow control and stop the remote host from sending data. When the application
is ready for more data, the function uip restart() is used to tell the remote
end to start sending data again. The function uip stopped() can be used to
check if the current connection is stopped.

2.2 The uIP/system interface

From the system’s standpoint, uIP consists of three C functions, uip init(),
uip input(), and uip periodic(). The uip init() function is used to initial-
ize the uIP stack and is called during system startup. The function uip input()

is called when the network device driver has read an IP packet into the packet
buffer, and uip periodic() is called periodically, typically once per second. It
is the responsibility of the system to call these uIP functions.

2.2.1 The uIP/device driver interface

When the device driver has placed an incoming IP packet in the packet buffer
(the uip buf), the system should call the uip input() function. This func-
tion will process the packet and call the application if necessary. When the
uip input() function returns, an outgoing packet is placed in the packet buffer.
The size of the outgoing packet is held in the global uip len variable. If uip len

is zero, no packet is to be sent out.

2.2.2 The uIP/periodic timer interface

The periodic timer is used for driving all uIP internal timer events such as packet
retransmissions. When the periodic timer fires, the uIP function uip periodic()

should be called, once per TCP connection. The connection number is passed
as an argument to the uip periodic() function.
Similar to the uip input() function, when the uip periodic() function

returns, an outbound IP packet may be placed in the packet buffer. Figure 4
shows an example code snipped for calling the uip periodic() function and
taking care of the outbound packet. In this particular example, the function
netdev send() is part of the network device driver and will send the contents
of the uip buf array out on the network.

for(i = 0; i < UIP_CONNS; ++i) {

uip_periodic(i);

if(uip_len > 0)

netdev_send();

}

Figure 4: Example code for interfacing the periodic timer with uIP.

2.3 uIP function summary

Table 2 contains a summary of all functions that uIP provides.

6

Table 2: uIP function summary.
System interface
uip init() Initialize uIP
uip input() Process an incoming packet
uip periodic() Process a periodic timer event
Application interface
uip listen() Start listening on a port
uip connect() Connect to a remote host
uip send() Send data on the current connection
uip datalen() The size of the incoming data
uip close() Close the current connection
uip abort() Abort the current connection
uip stop() Stop the current connection
uip stopped() Find out if connection is stopped
uip restart() Restart the current connection
Test functions
uip newdata() Remote host has sent new data
uip acked() Sent data has been acknowledged
uip connected() The current connection has just been connected
uip closed() The current connection has just been closed
uip aborted() The current connection has just been aborted
uip timedout() The current connection has just timed out
uip rexmit() Data should be retransmitted
uip poll() Application is being polled
Misc. functions
uip mss() Obtain the MSS for the current connection
uip ipaddr() Pack IP address structure
htons(), ntohs() Convert between host and network byte order

3 Protocol implementations

uIP implements four of the basic protocols in the TCP/IP protocol suite; ARP [Plu82],
IP [Pos81b], ICMP [Pos81a] and TCP [Pos81c]. Link layer protocols such as
PPP can be implemented as a device driver under uIP. Application layer pro-
tocols such as HTTP, FTP or SMTP can be implemented as an application
running on top of uIP.

3.1 Address Resolution Protocol — ARP

The ARP protocol maps between IP addresses and Ethernet MAC addresses
and is needed for TCP/IP operation on an Ethernet. The ARP implementation
in uIP maintains a table of IP to MAC address mappings. When an IP packet
is to be sent out on the Ethernet, the ARP table is consulted in order to find
the MAC address to which the packet should be sent. If the IP address cannot
be found in the table, an ARP request packet is sent. The request packet is
broadcasted over the network and requests the MAC address for a given IP
address. The host that has been given the requested IP address responds by
sending an ARP reply. When uIP gets an ARP reply, the ARP table is updated.

7

To save memory, ARP requests for an IP address overwrites the outgoing
IP packet for which the request is sent. It is assumed that the upper layers will
retransmit the data that has been overwritten.
Every ten seconds, the table is refreshed and old entries are discarded. The

default lifetime for an ARP table entry is 20 minutes.

3.2 Internet Protocol — IP

The IP layer code in uIP has two responsibilities: verifying the correctness of
the IP header of incoming packets and demultiplexing the packet between the
ICMP and TCP protocols. The IP layer code is very simple and consists of 9
if statements. The IP layer in uIP is greatly simplified by the fact that it does
not implement IP fragmentation and reassembly.

3.3 Internet Control Message Protocol — ICMP

In uIP, only one type of ICMP messages are implemented: the ICMP echo
message. ICMP echo messages are frequently used by the ping program to
check if a host is online. In uIP, ICMP echos are processed in a very simple
fashion. The ICMP type field is changed from the “echo” type to the “echo
reply” type, and the ICMP checksum is adjusted accordingly. Next, the IP
addresses in the IP header are exchanged and the packet is sent back to the
original sender.

3.4 Transmission Control Protocol — TCP

In order to reduce memory usage, the TCP in uIP does not implement a slid-
ing window for sending and receiving data. Incoming TCP segments are not
buffered by uIP, but must be processed immediately by the application. Note
that this does not prevent the application from buffering the data by itself. For
outbound data, uIP cannot have more than one outstanding TCP segment per
connection.

3.4.1 Connection state

In uIP, the complete state of each TCP connection consists of the local and
remote TCP port numbers, the IP address of the remote host, three sequence
numbers, the value of the retransmission timer, the number of retransmissions
for the last segment, and the MSS (maximum segment size) for the connection.
In addition to this, each connection also may hold some application state. The
three sequence numbers are the sequence number of the byte that is expected to
be received next, the sequence number of the first byte in the last segment sent,
and the sequence number of the next byte to be sent. The connection state is
represented by the uip conn structure that can be seen in Figure 5.
An array of uip conn structures is used to hold all connections in uIP.

The size of the array is equal to the maximum amount of simultaneous TCP
connections and is configured at compile time (see Section 4).

8

struct uip_conn {

u8_t tcpstateflags; /* TCP state and flags. */

u16_t lport, rport; /* The local and the remote port. */

u16_t ripaddr[2]; /* The IP address of the remote peer. */

u8_t rcv_nxt[4]; /* The sequence number that we expect

to receive next. */

u8_t snd_nxt[4]; /* The sequence number that was last

sent by us. */

u8_t ack_nxt[4]; /* The sequence number that should be

ACKed by next ACK from peer. */

u8_t timer; /* The retransmission timer. */

u8_t nrtx; /* Counts the number of retransmissions

for a particular segment. */

u8_t mss; /* The maximum segment size for the

connection. */

u8_t appstate[UIP_APPSTATE_SIZE];

};

Figure 5: The uip conn structure.

3.4.2 Input processing

TCP input processing starts with verifying the TCP checksum. If the check-
sum is found to be correct, the source and destination port numbers and IP
addresses are used to demultiplex the packet between the currently active TCP
connections. If no active connection matched the incoming packet, the packet
is dropped if it is not a connection request for a listing port. If the packet is a
connection request for a closed port, uIP sends an RST packet in response.
If a listening port is found, the array of uip conn structures is scanned for

any inactive connections. If one is found, it is filled in with the port numbers
and IP addresses of the new connection. If the connection request carries an
TCP MSS (maximum segment size) option, it is parsed and checked against the
currently configured MSS to determine the MSS of the connection. The smaller
of the two is chooses. Finally, a response packet is sent to acknowledge the
opened connection.
Should the incoming packet be destined for an already active connection,

the sequence number of the packet is checked with the next expected sequence
number from the remote host (the rcv nxt variable in the uip conn structure
shown in Figure 5). If the sequence number is not the next expected, the packet
is dropped and an ACK is sent to indicate the next sequence number that is
expected. Next, the acknowledgment number in the incoming packet is checked
to see if it acknowledges any outstanding data for the connection. If it does, the
application will be made aware of this fact.
When the sequence and acknowledgment numbers have been checked, the

packet will be handled differently depending on the current TCP state. If the
connection is in the SYN-RCVD state and the incoming packet acknowledged
the previously sent SYNACK packet, the connection will enter the ESTAB-
LISHED state, and the application function is invoked to inform that the con-
nection has been fully connected. For connections in the ESTABLISHED state,

9

the application function is invoked if there is new data sent by the remote host,
or if the remote host has acknowledged previously sent data.
When the application function returns, TCP checks if the application has

any data to send. If so, a TCP/IP packet is constructed in the packet buffer.

3.4.3 Output processing

Output processing is straightforward and quite a lot simpler than the input pro-
cessing. Basically, all fields of the TCP and IP headers are filled in with values
from the uip conn structure and the TCP and IP checksums are calculated.
When the uip process() function returns, the packet is sent by the network
device driver.

3.4.4 Retransmissions

Retransmissions are handled when uIP is invoked by the periodic timer (see
Section 2.2.2). Connections that have outstanding data (i.e., data that is
sent but not yet acknowledged) is flagged by the UIP OUTSTANDING bit in the
tcpstateflags variable in the uip conn structure (Figure 5). For those con-
nections, the timer variable is decreased. When the timer reaches zero, the last
segment should be retransmitted and the application function is invoked to do
the actual retransmission.
If the number of retransmissions of a particular segment exceeds a config-

urable threshold, the connection is dropped and an RST segment is sent to the
remote end of the connection. The application function is invoked to inform it
that the connection has timed out.

3.4.5 TCP resets

The TCP specification requires that a packet with the RST (reset) flag set
must kill a connection if the sequence and acknowledgment numbers in the
TCP header falls within the current receive window for the connection. In
order to reduce the code size, uIP does not strictly adhere to this. Instead, if
a packet with the RST flag set arrives in a connection, the connection will be
killed regardless of the values of the sequence and acknowledgment numbers.
This behavior might be revised in future versions of uIP.

4 Configuring uIP

The configuration for uIP is kept in a single .h-file called uipopt.h. This
file contains not only configuration options that are project specific (such as IP
address of the uIP node and the maximum number of simultaneous connections)
but also architecture and C compiler specific options. The file is selfcontained
and documented through comments.

5 Architecture specific functions

While the IP, ICMP and TCP protocol implementations in uIP are implemented
in a single C function (the uip process() function), they need the help of four

10

support functions. The support functions implement 32-bit additions and check-
sum calculations. With uIP version 0.4, the support function implementations
were split from the actual protocol implementations in order to make it easier
to handcraft the support functions in assembler. Since the support functions
called frequently, there is a substantial gain in making those functions run as
fast as possible.
The four support functions are the two functions for calculating the IP and

TCP checksums, uip ipchksum(), uip tcpchksum(), and the two functions for
performing 32-bit additions of TCP sequence numbers, uip add ack nxt(), and
uip add rcv nxt(). The uIP distribution contains sample C implementations
of the support functions.
The uip ipchksum() calculates and returns the Internet checksum [BBP88]

of the IP header but without doing the bit-wise negation of the checksum. The
IP header can be found in the first 20 bytes of the uip buf array.
The uip tcpchksum() function calculates the TCP checksum. The TCP

checksum is the Internet checksum of the TCP header and the TCP data. This
function is somewhat complicated by the fact that the TCP header and the
TCP data may be located in different memory locations. The TCP header can
be found 20 bytes from the start of the uip buf array (i.e., at &uip buf[20])
and the uip appdata pointer points to start of the TCP data. The size of the
TCP data can be calculated by subtracting the size of the IP and TCP headers
from the size of the entire packet. The size of the packet is contained in the
global uip len variable. Since uIP does not support IP or TCP options in the
data stream, the total size of the IP and TCP header is 40 bytes.

6 Example applications

This section presents a number of simple examples of uIP applications.

6.1 A very simple application

This first example shows a very simple application. The application listens for
incoming connections on port 1234. When a connection has been established,
the application replies to all data sent to it by saying “ok”.
Figure 6 shows the implementation of this application. The application is

initialized with the function called example1 init() and the uIP callback func-
tion is called example1 app(). For this application, the configuration variable
UIP APPCALL should be defined to be example1 app.
The initialization function calls the uIP function uip listen() to register

a listening port. The actual application function example1 app() uses the test
functions uip newdata() and uip rexmit() to determine why it was called. If
the application was called because the remote end has sent it data, it responds
with an “ok”. If the application function was called because data was lost in
the network and has to be retransmitted, it also sends an “ok”.
Note that this example shows a complete uIP application. It is not required

for an application to deal with all types of events such as uip connected() or
uip timedout().

11

void example1_init(void) {

uip_listen(1234);

}

void example1_app(void) {

if(uip_newdata() || uip_rexmit()) {

uip_send("ok\n", 3);

}

}

Figure 6: A very simple application.

6.2 A more advanced application

This second example is slightly more advanced than the previous one, and shows
how the application state field in the uip conn structure is used.
This application is similar to the first application in that it listens to a port

for incoming connections and responds to data sent to it with a single “ok”.
The big difference is that this application prints out a welcoming “Welcome!”
message when the connection has been established.
This seemingly small change of operation makes a big difference in how

the application is implemented. The reason for the increase in complexity is
that if data should be lost in the network, the application must know what
data to retransmit. If the “Welcome!” message was lost, the application must
retransmit the welcome and if one of the “ok” messages is lost, the application
must send a new “ok”.
The application knows that as long as the “Welcome!” message has not been

acknowledged by the remote host, it might have been dropped in the network.
But once the remote host has sent an acknowledgment back, the application can
be sure that the welcome has been received and knows that any lost data must
be an “ok” message. Thus the application can be in either of two states: either
in the WELCOME-SENT state where the “Welcome!” has been sent but not
acknowledged, or in the WELCOME-ACKED state where the “Welcome!” has
been acknowledged.
When a remote host connects to the application, the application sends

the “Welcome!” message and sets it’s state to WELCOME-SENT. When the
welcome message is acknowledged, the application moves to the WELCOME-
ACKED state. If the application receives any new data from the remote host,
it responds by sending an “ok” back.
If the application is requested to retransmit the last message, it looks at in

which state the application is. If the application is in the WELCOME-SENT
state, it sends a “Welcome!” message since it knows that the previous welcome
message hasn’t been acknowledged. If the application is in the WELCOME-
ACKED state, it knows that the last message was an “ok” message and sends
such a message.
The implementation of this application can be seen in Figure 7. Figure 8

shows the configuration settings for this application.

12

struct example2_state {

enum {WELCOME_SENT, WELCOME_ACKED} state;

};

void example2_init(void) {

uip_listen(2345);

}

void example2_app(void) {

struct example2_state *s;

s = (struct example2_state *)uip_conn->appstate;

if(uip_connected()) {

s->state = WELCOME_SENT;

uip_send("Welcome!\n", 9);

return;

}

if(uip_acked() && s->state == WELCOME_SENT) {

s->state = WELCOME_ACKED;

}

if(uip_newdata()) {

uip_send("ok\n", 3);

}

if(uip_rexmit()) {

switch(s->state) {

case WELCOME_SENT:

uip_send("Welcome!\n", 9);

break;

case WELCOME_ACKED:

uip_send("ok\n", 3);

break;

}

}

}

Figure 7: A more advanced application.

#define UIP_APPCALL example2_app

#define UIP_APPSTATE_SIZE sizeof(struct example2_state)

Figure 8: Configuration settings for the application.

13

6.3 Differentiating between applications

If the system should run multiple applications, one technique to differentiate
between them is to use the TCP port number of either the remote end or the
local end of the connection. Figure 9 shows how the two examples above can
be combined into one application.

void example3_init(void) {

example1_init();

example2_init();

}

void example3_app(void) {

switch(uip_conn->lport) {

case htons(1234):

example1_app();

break;

case htons(2345):

example2_app();

break;

}

}

Figure 9: Two applications combined and differentiated using local port num-
bers.

6.4 Receiving large amounts of data

This example shows a simple application that connects to a host, sends an
HTTP request for a file and downloads it to a slow device such a disk drive.
This shows how to use the flow control functions of uIP. The application is
shown in Figure 10.
When the connection has been established, an HTTP request is sent to the

server. Since this is the only data that is sent, the application knows that if it
needs to retransmit any data, it is that request that should be retransmitted.
It is therefore possible to combine these two events as is done in the example.
When the application receives new data from the remote host, it sends this

data to the device by using the function device enqueue(). It is important to
note that this example assumes that this function copies the data into its own
buffers. The data in the uip appdata buffer will be overwritten by the next
incoming packet.
If the device’s queue is full, the application stops the data from the remote

host by calling the uIP function uip stop(). The application can then be
sure that it will not receive any new data until uip restart() is called. The
application polling event is used to check if the device’s queue is no longer full
and if so, the data flow is restarted with uip restart().

14

void example4_init(void) {

u16_t ipaddr[2];

uip_ipaddr(ipaddr, 192,168,0,1);

uip_conn(ipaddr, 80);

}

void example4_app(void) {

if(uip_connected() || uip_rexmit()) {

uip_send("GET /file HTTP/1.0\r\nServer:192.186.0.1\r\n\r\n",

48);

return;

}

if(uip_newdata()) {

device_enqueue(uip_appdata, uip_datalen());

if(device_queue_full()) {

uip_stop();

}

}

if(uip_poll() && uip_stopped()) {

if(!device_queue_full()) {

uip_restart();

}

}

}

Figure 10: An application which receives large amounts of data

15

6.5 A simple web server

This example shows a very simple file server application that listens to two
ports and uses the port number to determine which file to send. If the files are
properly formatted, this simple application can be used as a web server with
static pages. Figure 11 shows the implementation.
The application state consists of a pointer to the data that should be sent

and the size of the data that is left to send. When a remote host connects to
the application, the local port number is used to determine which file to send.
The first chunk of data is sent using uip send(). Care is taken so that at most
MSS bytes of data is sent.
The application is driven by incoming acknowledgments. When data has

been acknowledged, new data can be sent. If there is no more data to send, the
connection is closed using uip close().

References

[BBP88] R. Braden, D. Borman, and C. Partridge. Computing the internet
checksum. RFC 1071, Internet Engineering Task Force, September
1988.

[Plu82] D. C. Plummer. An ethernet address resolution protocol. RFC 826,
Internet Engineering Task Force, November 1982.

[Pos81a] J. Postel. Internet control message protocol. RFC 792, Internet Engi-
neering Task Force, September 1981.

[Pos81b] J. Postel. Internet protocol. RFC 791, Internet Engineering Task
Force, September 1981.

[Pos81c] J. Postel. Transmission control protocol. RFC 793, Internet Engineer-
ing Task Force, September 1981.

16

struct example5_state {

char *dataptr;

unsigned int dataleft;

};

void example5_init(void) {

uip_listen(80);

uip_listen(81);

}

void example5_app(void) {

struct example5_state *s;

s = (struct example5_state)uip_conn->appstate;

if(uip_connected()) {

switch(uip_conn->lport) {

case htons(80):

s->dataptr = data_port_80;

s->dataleft = datalen_port_80;

break;

case htons(81):

s->dataptr = data_port_81;

s->dataleft = datalen_port_81;

break;

}

uip_send(s->dataptr,

uip_mss() < s->dataleft? uip_mss(): s->dataleft);

return;

}

if(uip_acked()) {

if(s->dataleft < uip_mss()) {

uip_close();

return;

}

s->dataptr += uip_mss();

s->dataleft -= uip_mss();

uip_send(s->dataptr,

uip_mss() < s->dataleft? uip_mss(): s->dataleft);

}

}

Figure 11: A simple file server.

17

	1 Introduction
	2 Interfacing uIP
	2.1 The uIP/application interface
	2.1.1 uIP/application events
	2.1.2 Receiving data
	2.1.3 Sending data
	2.1.4 Retransmitting data
	2.1.5 Closing connections
	2.1.6 Reporting errors
	2.1.7 Polling
	2.1.8 Listening ports
	2.1.9 Opening connections
	2.1.10 Flow control

	2.2 The uIP/system interface
	2.2.1 The uIP/device driver interface
	2.2.2 The uIP/periodic timer interface

	2.3 uIP function summary

	3 Protocol implementations
	3.1 Address Resolution Protocol --- ARP
	3.2 Internet Protocol --- IP
	3.3 Internet Control Message Protocol --- ICMP
	3.4 Transmission Control Protocol --- TCP
	3.4.1 Connection state
	3.4.2 Input processing
	3.4.3 Output processing
	3.4.4 Retransmissions
	3.4.5 TCP resets

	4 Configuring uIP
	5 Architecture specific functions
	6 Example applications
	6.1 A very simple application
	6.2 A more advanced application
	6.3 Differentiating between applications
	6.4 Receiving large amounts of data
	6.5 A simple web server

	Bibliography

